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2.8 Divergence of a vector function

The electric field has a definite direction and magnitude at every point. It
is a vector function of the coordinates, which we have often indicated by
writing E(x, v, z). What we are about to say can apply to any vector func-
tion, not just to the electric field; we shall use another symbol, F(x, v, z),
as a reminder of that. In other words, we shall talk mathematics rather
than physics for a while and call F simply a general vector function. We
shall keep to three dimensions, however.

Consider a finite volume V of some shape, the surface of which we
shall denote by S. We are already familiar with the notion of the total flux
® emerging from S. It is the value of the surface integral of F extended
over the whole of S:

D= / F - da. (2.42)
S

In the integrand da is the infinitesimal vector whose magnitude is the
area of a small element of S and whose direction is the outward-pointing
normal to that little patch of surface, indicated in Fig. 2.21(a).

Now imagine dividing V into two parts by a surface, or a diaphragm,
D that cuts through the “balloon” S, as in Fig. 2.21(b). Denote the two
parts of V by V| and V> and, treating them as distinct volumes, compute
the surface integral over each separately. The boundary surface S; of V|
includes D, and so does S3. It is pretty obvious that the sum of the two
surface integrals

/F~da1+f F - da, (2.43)
Mt S2

will equal the original integral over the whole surface expressed in
Eq. (2.42). The reason is that any given patch on D contributes with one
sign to the first integral and the same amount with opposite sign to the
second, the “outward” direction in one case being the “inward” direction
in the other. In other words, any flux out of Vi, through this surface D,
is flux into V,. The rest of the surface involved is identical to that of the
original entire volume.

We can keep on subdividing until our internal partitions have divided
V into a large number of parts, Vy,...,V;, ..., Vy, with surfaces Sy, . . .,
Si,...,Sy. No matter how far this is carried, we can still be sure that

N
Z/Edai:/F-da:d). (2.44)
i=1Y5Si S

Figure 2.21.

(a) A volume V enclosed by a surface S is divided (b) into two pieces
enclosed by S; and S,. No matter how far this is carried, as in (c) and
(d), the sum of the surface integrals over all the pieces equals the
original surface integral over S, for any vector function F.
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What we are after is this: in the limit as N becomes enormous we
want to identify something which is characteristic of a particular small
region — and, ultimately, of the neighborhood of a point. Now the surface
integral

/ F - da; (2.45)
Si

over one of the small regions is not such a quantity, for if we divide every-
thing again, so that N becomes 2N, this integral divides into two terms,
each smaller than before since their sum is constant. In other words, as
we consider smaller and smaller volumes in the same locality, the sur-
face integral over one such volume gets steadily smaller. But we notice
that, when we divide, the volume is also divided into two parts that sum
to the original volume. This suggests that we look at the ratio of surface
integral to volume for an element in the subdivided space:

f s; F- dai

Vi

It seems plausible that for N large enough, that is, for sufficiently
fine-grained subdivision, we can halve the volume every time we halve
the surface integral, so we find that, with continuing subdivision of any
particular region, this ratio approaches a limit. If so, this limit is a prop-
erty characteristic of the vector function F in that neighborhood. We call

it the divergence of F, written divF. That is, the value of divF at any
point is defined as

(2.46)

1
divF = lim — / F - da; (2.47)
Vi—0 Vi Js.

where V; is a volume including the point in question, and S;, over which
the surface integral is taken, is the surface of V;. We must include the
proviso that the limit exists and is independent of our method of sub-
division. For the present we shall assume that this is true.

The meaning of div F can be expressed in this way: div F is the flux
out of V;, per unit of volume, in the limit of infinitesimal V;. It is a scalar
quantity, obviously. It may vary from place to place, its value at any par-
ticular location (x,y, z) being the limit of the ratio in Eq. (2.47) as V; is
chopped smaller and smaller while always enclosing the point (x,y, z).
So div F is simply a scalar function of the coordinates.

2.9 Gauss’s theorem and the differential form

of Gauss’s law
If we know this scalar function of position, div F, we can work our way
right back to the surface integral over a large volume. We first write
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Eq. (2.44) in this way:

fF da_ZfF da; = Zv [fSF da’] (2.48)

In the limit N — o0, V; — 0, the term in brackets becomes the diver-
gence of F, and the sum goes into a volume integral:

/ F.-da= f divF dv (Gauss’s theorem). (2.49)
S v

This result is called Gauss’s theorem, or the divergence theorem. It holds
for any vector field for which the limit involved in Eq. (2.47) exists. Note
that the entire content of the theorem is contained in Eq. (2.44), which
itself is simply the statement that the fluxes cancel in pairs over the inte-
rior boundaries of all the little regions. The other steps in the proof were
the multiplication by 1 in the form of V;/V;, the use of the definition in
Eq. (2.47), and the conversion of an infinite sum to an integral. None of
these steps contains much content.

Let us see what Eq. (2.49) implies for the electric field E. We have
Gauss’s law, Eq. (1.31), which assures us that

1
/E -da= — | pdv. (2.50)
S €0 Jv

If the divergence theorem holds for any vector field, it certainly holds

for E:
/E~da: / divE dv. (2.51)
N 14

Equations (2.50) and (2.51) hold for any volume we care to choose — of
any shape, size, or location. Comparing them, we see that this can only
be true if, at every point,

dvE=2 (2.52)
€0

If we adopt the divergence theorem as part of our regular mathematical
equipment from now on, we can regard Eq. (2.52) simply as an alterna-
tive statement of Gauss’s law. It is Gauss’s law in differential form, that
is, stated in terms of a local relation between charge density and elec-
tric field.

Example (Field and density in a sphere) Let’s use the result from the
example in Section 1.11 to verify that Eq. (2.52) holds both inside and outside a
sphere with radius R and uniform density p. Spherical coordinates are of course
the most convenient ones to use here, given that we are dealing with a sphere.
For the purposes of this example we will simply accept the expression given in
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Eq. (F.3) in Appendix F for the divergence (also written as V - E) in spheri-
cal coordinates. This appendix explains how to derive the various vector opera-
tors, including the divergence, in the common systems of coordinates (Cartesian,
cylindrical, spherical). You are encouraged to read it in parallel with this chapter.
In Section 2.10 we give a detailed derivation of the form of the divergence in
Cartesian coordinates.

Since the electric field due to the sphere has only an r component, Eq. (F.3)
tells us that the divergence of E is divE = (1/ r2)3(r2Er) /dr. Inside the sphere,
we have E;, = pr/3eq from Eq. (1.35), so

19 1 pr?
divEp = —— (222 ) =220 = 2 (2.53)
r2 or 3¢ r2 € €0

as desired. Outside the sphere, the field is E, = pR3 /360}’2 from Eq. (1.34),
which equals the standard Q/47'r60r2 result when written in terms of the total
charge Q. However, the exact form doesn’t matter here. All that matters is that E,-
is proportional to 1/ r2, because then

divE ocii(rzi>—0 (2.54)

out r2 ar r2 — V. .
This agrees with Eq. (2.52) because p = 0 outside the sphere. Of course, it is no
surprise that these relations worked out — we originally derived E; from Gauss’s
law, and Eq. (2.52) is simply the differential form of Gauss’s law.

Although we used spherical coordinates in this example, Eq. (2.52) must
still be true for any choice of coordinates. The task of Exercise 2.68 is to redo
this example in Cartesian coordinates. If you are uneasy about invoking the above
form of the divergence in spherical coordinates, you should solve Exercise 2.68
after reading the following section.

2.10 The divergence in Cartesian coordinates
While Eq. (2.47) is the fundamental definition of divergence, indepen-
dent of any system of coordinates, it is useful to know how to calcu-
late the divergence of a vector function when we are given its explicit
form. Suppose a vector function F is expressed as a function of Cartesian
coordinates x, y, and z. That means that we have three scalar functions,
Fx(x,y,2), Fy(x,y,2), and F,(x,y,z). We’ll take the region V; in the shape
of a little rectangular box, with one corner at the point (x, y, z) and sides
Ax, Ay, and Az, as in Fig. 2.22(a). Whether some other shape will yield
the same limit is a question we must face later.

Consider two opposite faces of the box, the top and bottom for
instance, which would be represented by the da vectors Z Ax Ay and
—Z Ax Ay. The flux through these faces involves only the z component
of F, and the net contribution depends on the difference between F, at
the top and F, at the bottom or, more precisely, on the difference between
the average of F, over the top face and the average of F, over the bottom
face of the box. To the first order in small quantities this difference is
(0F;/0z) Az. Figure 2.22(b) will help to explain this. The average value
of F, on the bottom surface of the box, if we consider only first-order

b Ax A
®) x+T’y+—y’Z+AZ)

(x,y,2)

A
2 YT

Figure 2.22.
Calculation of flux from the box of volume
Ax Ay Az.
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(b)

Figure 2.23.
The limit of the flux/volume ratio is independent
of the shape of the box.

variations in F; over this small rectangle, is its value at the center of the
rectangle. That value is, to first order’ in Ax and A Y,
F.( )+Axan+Ayan
X, Y, —_— 4+ = —.
AN DT Sy T Ty
For the average of F; over the top face we take the value at the center of
the top face, which to first order in the small displacements is
F )+Axan+Ay3Fz+A8Fz
(X, V¥, Z —_— —_— Z
dy 2 ox T2 ay 9z
The net flux out of the box through these two faces, each of which has
the area of Ax Ay, is therefore

(2.55)

(2.56)

Aty [Foe g 4 AXOFe | AVOF.  OF;
X X, Y, —_— = — —
Y e T Ty T % s

(flux out of box at top)

AxdF, AyadF,
— AxAy | F.(x,y,2) + ——+ ——|,

2.57
2 ox 2 9y ( )

(flux into box at bottom)

which reduces to Ax Ay Az (0F;/dz). Obviously, similar statements must
apply to the other pairs of sides. That is, the net flux out of the box
is Ax Az Ay(dFy/dy) through the sides parallel to the xz plane and
Ay Az Ax (0Fy/dx) through the sides parallel to the yz plane. Note that
the product Ax Ay Az occurs in all of these expressions. Thus the total
flux out of the little box is

(2.58)

dF, dF, OF
@:AxAyAz( Ty 2 —Z>

ox + ay 0z

The volume of the box is Ax Ay Az, so the ratio of flux to volume is
0Fy/dx + 0Fy/dy + 0F;/0z, and as this expression does not contain
the dimensions of the box at all, it remains as the limit when we let the
box shrink. (Had we retained terms proportional to (Ax)?, (Ax Ay), etc.,
in the calculation of the flux, they would of course vanish on going to
the limit.)

Now we can begin to see why this limit is going to be independent
of the shape of the box. Obviously it is independent of the proportions
of the rectangular box, but that isn’t saying much. It is easy to see that it
will be the same for any volume that we can make by sticking together
little rectangular boxes of any size and shape. Consider the two boxes in
Fig. 2.23. The sum of the flux ®; out of box 1 and @, out of box 2 is not

3 This is simply the beginning of a Taylor expansion of the scalar function F, in the
neighborhood of (x,y,z). Thatis, F;(x +a,y + b,z 4+ ¢) = F;(x,y,2) +
- - P P P P n
(a% +ba% +ca%) F,+---+ % (aa‘j—x —{—balV +ca%> F; + --- . The derivatives
are all to be evaluated at (x,y, z). In our case a = Ax/2,b = Ay/2,c =0, and we drop
the higher-order terms in the expansion.
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changed by removing the adjoining walls to make one box, for whatever
flux went through that plane was negative flux for one and positive for
the other. So we could have a bizarre shape like Fig. 2.23(c) without
affecting the result. We leave it to the reader to generalize further. Tilted
surfaces can be taken care of if you first prove that the vector sum of the
four surface areas of the tetrahedron in Fig. 2.24 is zero.

We conclude that, assuming only that the functions Fy, Fy, and F;
are differentiable, the limit does exist and is given by

Ve OF, | OF
ax ay 0z

(2.59)

We can also write the divergence in a very compact form using the “V”
symbol. From Eq. (2.13) we see that the gradient operator (symbolized
by V and often called “del”) can be treated in Cartesian coordinates as a
vector consisting of derivatives:

\Y A8+A8+A8 (2.60)
= X— —_— 7z—. .
ox y8y 0z

In terms of this vector operator, we can write the divergence in the
simple form, as you can quickly verify,

divF = V . F. 2.61)

If div F has a positive value at some point, we find — thinking of F
as a velocity field — a net “outflow” in that neighborhood. For instance,
if all three partial derivatives in Eq. (2.59) are positive at a point P,
we might have a vector field in that neighborhood something like that
suggested in Fig. 2.25. But the field could look quite different and still
have positive divergence, for any vector function G such that divG = 0
could be superimposed. Thus one or two of the three partial derivatives
could be negative, and we might still have divF > 0. The divergence
is a quantity that expresses only one aspect of the spatial variation of a
vector field.

Example (Field due to a cylinder) Let’s find the divergence of an electric
field that is rather easy to visualize. An infinitely long circular cylinder of radius
a is filled with a distribution of positive charge of density p. We know from
Gauss’s law that outside the cylinder the electric field is the same as that of a
line charge on the axis. It is a radial field with magnitude proportional to 1/r,
given by Eq. (1.39) with A = p(a®). The field inside is found by applying
Gauss’s law to a cylinder of radius r < a. You can do this as an easy problem

a,

Figure 2.24.
You can prove that a; +aj + a3 +a4 = 0.

.

Figure 2.25.
Showing a field that in the neighborhood of point
P has a nonzero divergence.
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y (see Exercise 2.42). You will find that the field inside is directly proportional to
r, and of course it is radial also. The exact values are:
pout — P4 forr > a,
E 260}’
gn = 2 forr < a. (2.62)
2¢()
E r
a Y Figure 2.26 is a section perpendicular to the axis of the cylinder. Rectangular
J coordinates aren’t the most natural choice here, but we’ll use them anyway to
x . * get some practice with Eq. (2.59). With r = /x2 + y2, the field components are
P expressed as follows:
P outside
2€yr N pa 2,
P e EQM = ( ) E°U = e for r > a,
26, r o (x? +y )
out Y\ rout _ pa Y
Figure 2.26. = () B = gl iy | errza
The field inside and outside a uniform cylindrical ) px
distribution of charge. EY = ( )E‘“ = — forr < a,
r 2¢q
EM = (y ) gin = 22 forr < a. (2.63)
r 2¢q

And E; is zero everywhere, of course.
Outside the cylinder of charge, div E has the value given by

E BE}O,M _ pa® 1 2x2 n 1 2y? .
dx dy 2 | 2+y2 (Z+y)2 24y (24y2)2
(2.64)
Inside the cylinder, div E is
gED  QED
x5 P gy =L, (2.65)
ax ay 2¢) €0

We expected both results. Outside the cylinder, where there is no charge, the net
flux emerging from any volume — large or small — is zero, so the limit of the ratio
Sflux/volume is certainly zero. Inside the cylinder we get the result required by the
fundamental relation Eq. (2.52).

Having gotten some practice with Cartesian coordinates, let’s redo this
example in a much quicker manner by using cylindrical coordinates. Since E
has only a radial component, Eq. (F.2) in Appendix F gives the divergence in
cylindrical coordinates as divE = (1/r) d(rE,)/dr (see Section F.3 for the de-
rivation). Inside the cylinder, the field is E,= pr/2¢y, so we quickly find
divE = p/e€q, as above. Outside the cylinder, the field is E, = paz/ZeOr, SO we
immediately find div E = 0, which is again correct. All that matters in this latter
case is that the field is proportional to 1/r. Any such field will have divE = 0.




